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SUMMARY

A method has been developed for calculating the velocity distribution
along an arbitrary line between the inner and outer walls of an annular auct
with axisymmetric swirling flow. The velocity gradient equation is used with
an assumea variation of meridional streamline curvature. Upstream flow
conaitions can vary between the inner and outer walls, and an assumed total
pressure distribution can be specified.

INTRODUCTION

Turbomachinery components are often connected by ducts, which are
usually annular. The configurations and aerodynamic characteristics of these
ducts are crucial to the optimum performance of the turbomachinery blade
rows. One available method of duct-flow analysis is a finite-difference,
stream-function analysis, such as the meridional analysis of reference 1.
This is a good method of analysis, but it requires a large, compliex code to
handle arbitrary geometries. Computer storage and execution time are fairly
large. A faster and easier method of analyzing the flow through a duct with
axisymmetric swirling flow is the velocity gradient method, also known as
the stream filament or streamline curvature method. This method has been
usea extensively for blade passages but has not been used much for aucts,
except as the radial equilibrium equation. For the present analysis the
momentum equation is used to derive a velocity gradient equation, which is
used to determine the veiocity variation along an arbitrary straight line
between the inner and outer walls of an annular duct. The method works best
in a well-guided passage and where the curvatures of the wails are small as
compared with the width of the passage. Although other duct-analysis
methods are available, this analysis is faster ana requires less computer
storage.

A computer program, ANDUCT, has been written to solve the equations
involved in the analysis. Storage requirements are approximately 18 K
words. Computer time is approximately 200 msec per station on an IBM
370/3033 computer.

This report gives a derivation of the equations used and describes the
solution procedure and the use of the computer program. The computer code
is available from COSMIC, 112 Barrow Hall, The University of Georgia,
Athens, Ga. 30602.

SYMBOLS

a coefficient, eq. (A1l0)

b coefficient, eq. (AlO)

c coefficient, eq. (AlO)

Cp specific heat at constant pressure, J/kg K

e coefficient, eq. (Al0)
f coefficient, eq. (Al0)

G
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coefficient, eq. (Al0)

enthalpy, J/kg

total enthalpy, J/kg

meridional streamiine distance, meters

distance normal to streamline, meters

pressure, N/meter'2

total pressure, N/meter‘2

distance along quasi-orthogonal, meters

gas constant, J/kg K

radius from axis of rotation, meters

radius of curvature of meridional streamline, meters
radius of curvature of normal to meriagional streamline, meters
entropy, J/kg K

temperature, K

total temperature, K

time, sec

velocity, meters/sec

axial coordinate, meters

angle between meridional streamline and axis of rotation, rad; fig.

angle between velocity vector ana meridional piane, raa; fig. 1
specific heat ratio

angular coordinate, rad; fig. 1

angular momentum, rVg, meter/sec

density, kg/meter3

total density, kg/meter3

angle between quasi-orthogonal and radial direction, rad

1



Subscripts:

cr critical

h hub

m m-component
r r-component
t tip

z z-component
e e-component

METHOD OF ANALYSIS

The objective of this analysis method is to calculate the quasi-
two-dimensional velocity distribution that satisfies a specifiea mass flow
through an annular duct. The velocity variation along a quasi-orthogonal
(ref. 2) between the inner and outer walls is aeterminea by the momentum
equation along the quasi-orthogonal. The quasi-orthogonal is a straight
1ine between the walls of the annulus. With suitable assumptions, this
leaas to a velocity gradient equation. The velocity gradient equation is an
ordinary differential equation that can be solved numerically. This aeter-
mines the velocity distribution along the quasi-orthogonal. The analysis
for one quasi-orthgonal is independent of that for other quasi-orthogonals.
When the analysis is done for several lines, a velocity aistribution is
obtained for the entire duct.

The basic simplifying assumptions used to derive the equations ana to
obtain a solution along any quasi-orthogonal are the following:

(1) The flow in the annulus is steady.

(2) The flow is axisymmetric.

233 The fluid is a perfect gas with constant specfic heat cp.
4) The only forces along a quasi-orthogonal are those due Eo momentum
and pressure gradient. '

(5) There is linear variation of meridional streamline curvature along a
quasi-orthogonal.

(6) There is linear variation of meridional streamline angle along a
quasi-orthogonal.

The flow may be axial, radial, or mixed. Whirl, stagnation pressure,
and stagnation temperature must be specified but may vary between the inner
and outer walls. Losses and heat transfer are not included in the analysis
but may be simulated by specifying appropriate stagnation temperature and
pressure distributions. Within the given assumptions, no terms are omitted
from the basic velocity gradient equation (AlO). Equation (Al0), which is
derived in appendix A, is an ordinary differential equation with the
meridional component of velocity as the unknown. Equation (Al0) is solved
numerically and iteration is used to satisfy global continuity. Appendix B
outlines the solution procedure.
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Figure 1. - Cylindrical coordinate system and velocity components,
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TITLE (first station of each duct)
BELTRAMI FLOW
LABEL {every station)
FORCED VORTEX
NHT | LSFR [ IPRINT | NEXT
3 1 1 0
GAM AR ZMSFL
1.4 287. 317.
RHUB RTIP ZHUB ZTp CURVH | CURVT ALH ALT
.5 L5 0. 0. 0. 0. 0. 0.
STRFN or QDIST array
0, [.5 [ | 1 [ I
ZLAMDA array
7.5 | %. | 675 | | T ] [
TIP array
8.5 | #.15 EXN ] 1 [
RHOIP array
L2512 | Lz ] ] | | [

Figure 2. - Input form,

DESCRIPTION OF INPUT AND OUTPUT

Figure 1 shows the cylindrical coordinate system and velocity com-
ponents. Figure 2 shows the input required for a single station. Sample
input is shown with the numerical example.

Input
The input variables are described in terms of a consistent set of the

International System of Units (SI). The program, however, will run with
input in any consistent set of units.




The first line is the general title for a given geometry consisting of
several quasi-orthogonals in a sequence. Succeeding quasi-orthogonals do
not require a title, uniess a new geometry with a new sequence of quasi-
orthogonals is desired. The second line is a label that is required for
every quasi-orthogonal. The remaining lines are data:

NHT number of input points along quasi-orthogonal between inner
and outer walls, maximum of 50

LSFR integer (0 or 1) indicating whether flow conditions are given as a
function of stream function (0) or distance from inner wall (1)

IPRINT  integer (0 or 1) indicating whether a detailed solution should be
printed (1) or not printed (0) at each station

NEXT integer (-1, 0, or 1) indicating whether this is the last input
station (0). If more input stations follow, it also indicates
whether the following station is still for the same duct (1) or
whether a new series of input stations for another duct wiil

follow (-1)
GAM specific heat ratio, ¥y
AR gas constant, R, J/kg K

ZMSFL total mass flow through annulus, kg/sec

RHUB radius at inner wall, rp, meters

RTIP radius at outer wall, r¢, meters

ZHUB z coordinate at inner wall, meters

LTIP Z coordinate at outer wall, meters

CURVH meridional streamline curvature 1/r. at inner wall, I/meter
CURVT meridional streamline curvature 1/r. at outer wall, 1l/meter
ALH meridional streamline angle o at inner wall, deg

ALT meridional streamline angle o at outer wall, aeg

STRFN array of stream function values for input points where flow

conditions are specified. STRFN is given when LSFR = 0

QDIST array of distances from wall along quasi-orthogonal, meters.
QDIST is given when LSFR =1

ZLAMDA  array of values of angular momentum A corresponding to STRFN
or QDIST array, meter?/sec

TIP array of total temperatures T' corresponding to STRFN or QDIST
array, K



RHOIP array of total densities p' corresponding to STRFN or QDIST
array, kg/meter3

Units of Measurement

The International System of Units (ref. 3) is used throughout this
report. However, the program does not use constants that depend on the
system of units being used. Therefore, any consistent set of units can be
used; in particular U.S. customary units can be used.

Output

An example of output is given in table I. This output corresponds to
the input given in figure 2. The first output is a Tisting of input for a
given station in format similar to the input sheet. After the input list-
ing, detailed output for each station is printed if IPRINT = 1 is given as
input. A summary of the inner and outer wall results for a given geometry
is printed separately.

Error Messages

Several error messages have been incorporated into the program. These
messages are listed here. Where necessary, suggestions for finding ana
correcting the error are given.

(1) THE PASSAGE IS CHOKED AT THIS STATION.
THE CHOKING MASS FLOW IS X.XXXX.

This message is self-explanatory.
(2) SUPERSONIC MERIDIONAL VELOCITY COMPONENT AT THIS STATION

If the flow has a supersonic meridional velocity component, without shocks,
all the way from the hub to the shroud, a reasonable solution can be ob-
tained. However, this is not the usual situation and caution should be
exercised.

(3) SONIC MERIDIONAL VELOCITY COMPONENT AT THIS STATION.
THIS MAY RESULT IN AN INACCURATE SOLUTION

The velocity gradient equation (AlO0) is singular when the meridional veloc-
ity component js sonic. Because of this the solution becomes inaccurate
when the meridional velocity is near sonic. This message is printed when-
ever the meridional velocity component is within 1 percent of the sonic
velocity at some point on the quasi-orthogonal.

(4) NO SOLUTION COULD BE FOUND IN 100 ITERATIONS

This message is printed if no solution can be found. Most likely no solu-
tion exists for the given input. A common difficulty is an input distri-
bution of whirl, total temperature, and total density that is not possible
at the given mass flow.




(5) A FULLY CONVERGED SOLUTION COULD NOT BE OBTAINED IN 1000 ITERATIONS
AT THIS STATION
THE STREAM FUNCTION CHANGED BY X.XXX BETWEEN THE LAST TWO ITERATIONS

Even though the inner iteration converges, it may be possible that the
corrections due to streamline shift when LSFR = 0 will not converge.

(6) ITERATION PROCEDURE HAD TO BE RESTARTED TO AVOID EITHER A NEGATIVE
TEMPERATURE OR A NEGATIVE VELOCITY
RESTART PROCEDURE WAS ABORTED AFTER 1000 TOTAL NUMBER OF ITERATIONS

Most Tikely no solution exists for the given input. A common difficulty is
an input distribution of whirl, total temperature, and total density that is
not possible at the given mass flow.

(7) THE MAXIMUM MASS FLOW FOR WHICH A SOLUTION COULD BE OBTAINED WAS
X XXXX
THE MAXIMUM VALUE OF VSUBM AT THE HUB FOR WHICH A SOLUTION COULD BE
OBTAINED WAS X.XXXX
THE MINIMUM VALUE OF VSUBM AT THE HUB FOR WHICH A SOLUTION COULD BE
OBTAINED WAS X.XXXX
THE TOTAL NUMBER OF ITERATIONS WAS XXX
NSUB = XX
NADD = XX

These messages give debug information when one of the previous error
messages is printed.

(8) THE LIMIT OF 100 STATIONS PER CASE HAS BEEN EXCEEDED
OUTPUT IS GIVEN ONLY FOR THE FIRST 100 STATIONS

This message is self-explanatory.

NUMERICAL EXAMPLES
Beltrami Flow with Forced Vortex

A rotational flow with the vorticity vector paralilel to the velocity
vector is called Beltrami flow. An example of this type of flow is an
annular duct with both walls of constant radius and the tangential velocity
Vg proportional to the radius, that is, Vg = kr, where k s an
arbitrary constant. The total temperature is constant. This kind of flow,
which is discussed in reference 4, illustrates the limitations on possible
solutions. In reference 4, the axial component of velocity V, 1is shown
to vary with radius as follows:

2 2 2 2 2

where the subscript i refers to any reference radius. It can be seen from
this equation that a solution does not exist for large values of r.



BELTRAMI FLOW
FORCED VORTEX
NHT LSFR IPRINT NEXT
3 1 1

4
GAM AR ZMSFL
1.400000 287.0000 317.0000
RHUB RTIP ZHUB ZTIP CURVH CURVT ALRH ALT
0.5000000 1.500000 g.0000000 0.0000000 0.0000000 ©6.0000000 0.0000000 6.00000¢
QDIST ARRAY
0.0000000 0.5000000 1.000000
2LAMDA ARRAY
7.500000 30.00000 67.50000
T1 AY
288.1499 288.1499 288.1499
RHOIP ARRAY
1.224999 1.224999 1.2264999
FORCED VORTEX
1 v V/VCR VSUBM BETA STATIC PRESSURE STREAM FUNCTION
1 62.97757 0.2027507 61.16515 13.77914 98897.63 0.00060000
3 62.82813 0.2022697 60.83325 14.47685 989¢8.75 0.1019999E-01
5 62.67238 0.2017685 60.4%9181 15.15836 98920. 44 0.2080000E-01
7 62.51079 0.2012481 60.14095 15.82709 95932.69 6.3179997E-01
9 62.34114 0.2007020 59.77803 16.48668 98945.494 0.4319999E-01
11 62.16457 0.2001335 59.40379 17.13963 98958.69 0.5499995E-01
13 61.98123 0.1995432 59.01801 17.78833 98972.44 0.6719995E-01
15 61.79137 0.1989320 58.62042 18.43498 98986.56 0.7979989E-01
17 61.59505 0.1982999 58.21066 19.0815¢6 99081.19 0.9279996E-01
19 61.39240 0.1976476 57.78831 19.729%92 99016.19 0.1061999
21 61.18346 0.1969749 57.35295 20.38173 99031.63 0.119999%9
23 60.96829 9.1962822 56.90407 21.03862 99047.44 0.1341999
25 60.74690 0.1955695 56.44109 21.70213 99063.69 0.1487999
27 60.51926 0.1948366 55.96341 22.37373 99080.31 0.1637999
29 60.28534 D.1940835 55.47037 23.05484 99097.38 0.1791999
31 60.04506 0.1933099 54.,96126 23.74687 99114.81 0.1%49998
33 59.79839 0.1925158 54.43530 24.45123 99132.63 0.2111999
35 59.564523 0.1917008 53.89168 25.16936 99150.88 0.2277998
37 59.28546 0.1908644 53.32951 25.90260 99169.50 0.26647999
39 59.01892 0.1900063 52.764780 26.65247 99188.50 0.2621998
41 58.74554 0.18%91263 52.14555 27 .42044% 99207.9% 0.2799999
43 58.646513 0.1882235 51.52162 28.20808 99227.75 0.2681998
45 58.17751 0.1872975 50.87479 29.01707 99248.00 0.3167999
47 57.88251 0.1363478 50.20377 29.84912 99268.69 0.3357993
49 57.57996 0.1853737 49.50713 30.70610 99289.75 0.3551998
51 57.27228 0.1843830 48.78641 31.58839 99311.31 0.3750000
53 56.95122 0.1833495 48.03065 32.50282 99333.25 0.3951958
55 56.62460 0.1822581 47.24805 33.464569 $99355.69 0.4157999
57 56.28954 0.1812193 46.43419 34.41994 99378.50 0.4367998
59 55.94582 06.1801127 45.58772 35.42696 99401.81 0.45819%9
61 55.59320 6.1789775 46.70708 36.46861 996425.56 0.4795998
63 55.23151 6.1778131 43.79062 37.54681 99449.81 8.5021996
65 54.86053 0.1766188 42.83636 38.66402 99474.50 0.52647993
67 54.48006 0.1753939 41.84213 39.82300 99699.69 0.5477996
69 54.0899¢ 0.1741379 40.80548 41.02698 99525.31 0.5711994
71 53.68993 0.1728501 39.72351 42.27974 99551.38 0.5949998
73 53.27985 0.1715299 38.592386 43.58582 99577.88 0.6191993
75 52.85950 0.1701766 37.40968 46.95035 99604.88 0.6637998
77 52.42868 0.16878%6 36.16936 46.37958 99632.31 0.6687994
79 51.98712 0.1673681 34.86632 47.88101 99660.25 0.6941996
-3 51.536471 0.165911¢6 33.49388 %9.46376 99688.56 0.7199993
83 51.07115 0.1644192 32.04381 51.13885 99717.38 0.7461996
85 50.59627 0.1628903 30.50572 52.92035 99746.63 0.7727995
87 50.10976 0.1613240 28.86627 54.82602 99776.31 0.799799%94
- 89 49.61142 0.1597197 27.10786 56.87935 99806.44 0.8271995
91 49.10098 6.1580764 25.20651 59.11200 99837.00 0.8549995
93 48.57816 0.1563932 23.12801 61.56902 99867.94 0.8831992
95 48.04266 0.1546692 20.82037 64.31819 99899.31 0.9117994
97 47.69423 0.1529036 18.19789 67.470641 99931.06 0.9407992
99 46.93251 0.1510952 15.09911 71.23303 99963.25 0.9701996
101 46.36078 0.1492544% 11.14995 76.08366 99995.81 1.000000

ANDUCT, of course, cannot get a solution where none exists but will obtain a
solution reasonably close to the limit.

Table I gives the input for an example with hub radius of 0.5 and tip
radius of 1.5. The value of k is 30, and the input is given in SI units
at standard atmosphere conditions. With a value of Vy = 61 at the hub,

Vp equals 11 at the outer wall. This solution is obtained very close to
the maximum possible radius (1.522). The calculated distribution of V,
is plotted in figure 3 and is indistinguishable from the theoretical
distribution.

Boundary Layer Simulation
Any desired boundary layer profile can be simulated by specifying an

qppropriate total pressure distribution. The total pressure is specified
indirectly by specifying both total temperature and total density. Care
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must be taken that the total pressure variation is not excessive. Wall
velocities very close to zero are difficult to approximate. Although this
could be improved with more mesh points and double-precision calculations,
it is not warranted because of the approximate nature of the entire
calculation.

An example case is given for a parabolic velocity distribution cor-
responding to fully developed laminar flow. The corresponding total pres-
sure is calculated, and from this the total density is calculated, with a
uniform total temperature. The resulting total density must be modified
(increased) slightly at the walls to obtain a non-zero wall velocity. A
reasonable input for approximating fully developed Taminar flow is given in
table II. The calculated velocity distribution is plotted in figure 4.
Turbulent or other boundary layer profiles can be approximated in a similar
manner.

Source Flow

Because one of the features of this code is the ability to obtain a
reasonable solution for a case where the hub-to-shroud line is not
orthogonal to the fiow, dVp/dm is important to the solution. 1In previous
velocity gradient codes several hub-to-shroud lines must be used to esti-
mate dVp/dm (e.g., ref. 2). This is avoidea by using the continuity
equation in conjunction with the assumed variation of the meridional flow
angle o and the meridional streamline curvature 1/r¢.

TABLE I1. - BOUNDARY LAYER SIMULATION

FULLY DEVELOPED FLOW
LAMINAR CASE
NH; LSFR IPRINT NEXT
1 1

GAM AR ZMSFL
1.400000 287.0530 769.6902
RHUB RTIP ZHUB 2T1P CURVH CURVT ALH ALT
1.000000 2.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
QDIST ARRAY
0.0000000 0.5000000 1.000000
ZLAMDA ARRAY
0.000000¢ 0.000000¢C 0.0000000
ARRAY

288.1499 288.1499 288.1499
1.169999 1.224999 1.169999
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TABLE I1I. - SOURCE FLOW

SOURCE FLOW
30 DEGREE ANGLE, EACH SIDE

NHT  LSFR IPRINT  NEXT
3 1 1 0

GAM AR ZMSFL

1.400000 287.0530 16120.35

RHUB RTIP ZHUB 271P CURVH CURVTY ALH ALT
99.00000 1.0000 0.0000000 0.0000000 0.0000000 0.0000000 30.00008 ~38.08000

10
QDIST ARRAY
0.0000000 1.000000 2.000000

ZLAMDA ARRAY

0.0000000 0.0000000 0.0000000
TIP ARRAY

288.1499 288.1499 288.1499
RHOIP ARRAY

1.2264999 1.224999 1.2264999

When compressibility is neglected, the velocity from a source is
inversely proportional to the distance from the source. By choosing a large
radius of 100, a two-dimensional source is approximated. Since there is no
whirl in this example, V = V = k/d, where k 1is an arbitrary constant
and d is the distance from the source. Figure 5 shows the flow configura-
tion chosen for this example. The value of k was chosen to be 20. This
results in values of V = 10 at the inner and outer walls and
V= 20/\/§- = 11.5470 at the mean radius. The input for this example is
given in table III. Figure 6 compares the theoretical source velocity vari-
ation with the approximate solution calculated by ANDUCT. The difference in
the calculated curve is primarily due to the assumption of linear variation
in o between the hub and shroud. It can be seen that the loss in accuracy
is modest even with a 60° change in a across the passage.

Transition Duct

This example illustrates a transition duct between turbomachinery com-
ponents. The flow conditions at the duct entrance are shown in figure 7 and
in table IV. A linear loss variation along the length of the duct is
included, but the whirl distribution at the inlet to the duct is assumed to be
constant along the length of the duct. Figure 8 shows the duct geometry, and
figure 9 compares the velocities calculated by ANDUCT with those calculated by
MERIDL (ref. 1). MERIDL obtains a finite-difference, stream-function solution
and is considered to be reasonably accurate. ANBUCT requires less than 1/3
the computer time required by MERIDL for this solution.
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TABLE IV. -~ TRANSITION DUCT
TRANSITION DUCT
STATION 1
NHT  LSFR IPRINT  REXT
9 0 1 1

GAM AR ZMSFL
1.318999 1716.510 0.6848600E-01
RHUB RTIP ZHUB zZTIP CURVH CURVT ALH ALT
0.1496000R RR:+19259§9 -0.4170000E-01 ~0.4170000E-01 0.7999998E-61 -0.2008000E-01 -0.1300000 0.4000000E-01
STRFN A
oinggooog 0.1250000 0.2500000 0.3750000 0.5000000 0.6250000 0.7500000 0.8750000
.00000
ZLAMDA ARRAY
g:.g!§93 82.16800 83.89099 85.29500 86.42000 87.33400 88.00400 38.39299
.3759
TIP ARRAY
3078.900 2075.500 2072.400 206%.600 2067.000 2064.700 2062.600 2060.300
059.400

RHOIP ARRAY
g.{l79000§-g§ 0.1183600E-02 0.1187400E-02 0.1191100E-02 0.1194400E-02 0.1197500E-02 0.1200400E~02 €.1203000E-02
.1205000E-
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CONCLUDING REMARKS

The ANDUCT program calculates the flow field for an arbitrary annular
duct with a straight centerline and axisymmetric swirling flow. This flow
field could also be calculated by the MERIDL program (ref. 1). However,
ANDUCT has the advantages of much less computer time (approximately 1/3 the
time for the given numerical exampie) and very much less storage. The
storage required for ANDUCT is 18 K words on the IBM 370/3033 Computer with
a virtual memory. Since MERIDL is a large, general code for a finite-
difference, stream-function solution including a blade row, the storage
would be very much larger, even with reduced array sizes. Thus the ANDUCT
program is a convenient program to use for analyzing an annular auct with
modest computer time on a computer with a small memory.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 11, 1982
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APPENDIX A
DERIVATION OF VELOCITY GRADIENT EQUATION

The velocity gradient equation desired is for the meridional velocity

component V;; as a function of q, the distance along a quasi-

orthogonal. The meridional velocity component V; is used as the depend-
ent variable since the tangential component is known from the specified
whirl A distribution. It is desired to obtain an equation for dVp/aq
where Vg, 1is the only unknown. All quantities other than V. are

known as a function of either g or the stream function. The velocity
gradient equation is based on the momentum equation in the direction of the
quasi-orthogonal.

2
l dp _ dvr E dr‘ + dVZ _d_Z (Al)
TodgT\d T 7r dqg dt dq

Equation (Al) is obtained from equation (B7) of reference 2 with w = 0.
The pressure gradient is related to the velocity gradient by assuming that
the entropy variation is known. By combining

%p-=dh—Tds

with

and
dh' = c_ dT"
cp T
we get
1oy T o Lo (A2)
pdg  "pdg = 'mdq 6 dq dq

Solving for dVy/dg by using equations (Al) and (A2) gives

2
Wy _ 1 vy, _ Xg_ dr , 1 Vv, a4z
dg "V, \dt " r Jdg V_ dt dq "

g

dv c 1
e dg T ds (A3)

ag dq - V_dq

590~
=

]



It is assumed that the whirl a and meridional streamline angle « are
known functions. Therefore Vp, Vg, and V; can be expressed in
terms of Vy:

Vr=Vm SIn a
A

Vo =T

VZ = Vm COS o

By differentiating these last two expressions and noting that da/dm = 1/rc
(where r. is the radius of curvature of the meridional streamline), we
obtain

av vﬁ oS o av_
C . I T
av, vg sin o dv
il _———Ti:——— + Vm C0S a I

The angle between the radial direction and the quasi-orthogonal is aenoted
by ¢ (fig. 10), so0 « - ¥ 1is the angle between the quasi-orthognal
and the true streamline orthogonal. We can use

%£-= Cos ¢
dz sin ¢
dg = ~

Arbitrary . m
quasi-orthogonal — //(-Streamline

Radius from axis of rotation, r, meters

Axial coordinate, z, meters

Figure 10, - Streamline and quasi-orthogonal angles.

15



16

When these relations are all used in equation (A3) and trigonometric
expressions for the difference of angles are used, we obtain

av - _
E_m - Vm cos (a Y + sin (a - ¥) f!ﬂ - _l___.gl +.l_ c gll - T das
q re dm r2Vm dq Vm p aq ag
(A4)
Since the entropy variation is usually known as a total temperature and
total pressure variation, we use
c_dT'
ds =B _Rdp
Tl pl
to obtain
2 2
A )
c dJ' - T ds = — m a7+ + RT.dp'
P 2reTt 2T p’
This expression can be substituted into equation (A4) to obtain
;Xﬂ = Vi €08 (o = ¥) + sin (a - ¥) EXE p @
q r‘c dm r2 Vm dq
L 22ar . Vm a1t RT dp'
2
2 'v_d ! !
re7 Vm qg 2T' dq Vmp dq (A5)

A1l the coefficients of Vp are known, except for dVy/dm. However,

dVp/dm can be calculated ?rom the continuity equation since the flow

angles and the streamline curvature are assumed to be known. In terms of m
and e velocity components, the continuity equation is

1] am am r

alpV,)  a(pV )
1 e m 123 1
F + + Dvm F-r + '—cn> = 0 (A6)

(See eq. A3(34) in ref. 4, where V3 =V, = 0.) The curvature of the
normal 1/re, 1is 23a/3n and can be calculated from the known quantities

3a/3q and a3a/am. We have



3a .
3q = cos (a - ¢)'§ﬁ + 5in (a - V) —

or, by solving for aa/dn

1
coS (a - ¥

|
SR
li

Ja ]
a—q— tan (G - w) ﬁ'

Note that aa/am = 1/r., ar/am = sin a, and 23(pVg)/3e = 0, substitute
in equation (A6), expand the derivatives, and solve for aVp/am to obtain

.3!9 -V tan (o ~ ¥)  sina _ 3afaq 1 3p (A7)
sm  m re r cos {a - V) o am

The only quantity that is not immediately known is ap/am. This quantity,
however, can be calculated from aVp/am:

0 < T 1/(Y—1)
oo 7)

where
oyl
T' ZcpT
and

Vo = %

Whensthese are used and any streamwise variation of p' and T' s
neglected, we find that

1ap 1 A% sin a _v 3V (A8)
p am ~— yRT r3 m am

Substitute equation (A8) in equation (A7) and solve for dVy to obtain
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Vo RV, ['tan (¢ — %) sina _ 3a/aq _ % Sincx] (A9)

am  RT — vi r. r cos (a - ¥) r34RT

When equation (A9) is substituted in equation (A5), we get

@V =V (adg+bda+cdlt)+E dy* fdi' + g dp (A10)

m
Vm

where

_ cos (¢ = ¥) + sin (a - ¥) YRT Jtan (a - ¥) S'ina(l + A2 )

a = -
re WRT - vé e r r3yRT
b__tan (a - ¥) WRT
-7 2
(WRT - V)
c o1
2T!
)
e = -2
r‘2
k2
f = 5
2roT!
o
2 V2
T=T'- __%__ _m
r cp 2cp




APPENDIX B
SOLUTION PROCEDURE

The velocity gradient equation (Al0) is an ordinary aifferential equa-
tion that can be readily solved by numerical methods for a given initial
value of V. at the hub. As a solution to equation (A10) is being
computed, a corresponding mass flow is computed from

W = f me 2nr cos {a - ¥) dq (B1)
where
1/(y-1)
V2 o+ 2
, m o
p = p 1 - —
2cpT

The desired solution is obtained by varying (V) until a solution to
equation (A10) is found that will satisfy equation (Bl). This requires an
iterative procedure, which is described below.

For the initial solution to equation (Al0), (Vg)y 1is estimated on
the basis of one-dimensional incompressible flow. The numerical solution is
calculated by the Heun method (ref. 5) for 100 mesh spaces from inner wall
to outer wall. If ZLAMDA, TIP, and RHOIP are all given as a function of
position (LSFR = 1), all the coefficients in equation (A10) can be calcu-
lated with the solution. However, if ZLAMDA, TIP, and RHOIP are given as a
function of the stream function (LSFR = 0), the coefficients can only be
approximated until a solution is computed. Thus an outer iteration must be
added to correct the coefficients. Usually only one or two outer iterations
are required. Within the inner iteration, estimates for (Vp), are
made by subroutine CONTIN, on the basis of previous calculations. After
three estimates are made, CONTIN will fit a parabola through the three
points to make the next estimate. This quickly leads to a solution for
subsonic flow. If the mass flow specified (ZMSFL) is too large, a solution
does not exist. However, CONTIN will make estimates to calculate the
largest possible mass flow (which is the choking mass flow for that
station). Subroutine CONTIN is more completely described in reference 6.

After the correct mass flow solution has been obtained with the aid of
CONTIN, the inner iteration has converged. If LSFR = 0 for input, an outer
iteration must be done to correct the coefficients that involve ZLAMDA, TIP,
or RHOIP, as mentioned previously.

If difficulty is encountered so that a valid solution cannot be
obtained, an appropriate message is printed, as discussed in the main-text
section on Error Messages.
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